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Linear filters

Digital filters

A digital filter maps some input sequence to another output sequence. In
this lecture, these sequences will have the index set Z. Other filters exist,
but in this course, filter will mean digital filter.

I If a filter is given by L, then the filter of a sequence {Xt} will be
another sequence, say {Yt}, and we write

{Yt} = L [{Xt}] . (11.1)

I When we refer to an element of the output of a filter, we will write a
subscript after the bracket, e.g.

Yu = L [{Xt}]u . (11.2)

To be clear, the t in {Xt} is a dummy variable, whilst u ∈ Z has meaning.
We have dropped the index set from the sequences for notational convenience, i.e. in this lecture {Xt} = {Xt}t∈Z.
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Linear filters

Linear time-invariant filters

Recall the backshift operator, denoted B. It has the property that

B [{Xt}]u = Xu−1 (11.3)

for any u ∈ Z.

Definition 11.1
A digital filter L is called a linear time-invariant (LTI) filter if for any
sequences {Xt} , {Yt} and any α ∈ C we have

1. Linearity:

L [{αXt + Yt}] = αL [{Xt}] + L [{Yt}] . (11.4)

2. Time invariance:

L [B [{Xt}]] = B [L [{Xt}]] . (11.5)
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Linear filters

Some examples

Example 11.2
The backshift operator is clearly a linear time-invariant filter.

Example 11.3
Consider a filter L such that for any u ∈ Z

L [{Xt}]u = Xu + φXu−1,

where φ ∈ R. This is linear because for any u ∈ Z

L [{αXt + Yt}]u = α(Xu + φXu−1) + Yu + φYu−1

= αL [{Xt}]u + L [{Yt}]u .

Time invariance is left to the interested reader, but is easily verified.
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Linear filters

Arbitrary time shifts

Say we want to shift by some arbitrary u ∈ Z, then we need only apply B
u times, i.e. for any s ∈ Z

Bu [{Xt}]s = Xs−u. (11.6)

(If u < 0, this means applying the inverse operator, B−1, −u times).
If L is an LTI filter, then for any u ∈ Z,

L [Bu {Xt}] = BuL [{Xt}] . (11.7)

Often, (11.7) is stated as the condition for time-invariance (as this
parallels the continuous-time version), however, one only needs to show
the weaker condition given in (11.5).
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Linear filters

Linear combinations of linear filters

Proposition 11.4

Consider two LTI filters L1 and L2, and let α ∈ C then the filter

L = αL1 + L2 (11.8)

is also an LTI filter.

Proposition 11.5

Consider two LTI filters L1 and L2. The filter L = L1L2, i.e. so that

L [{Xt}] = L1 [L2 [{Xt}]] (11.9)

is also an LTI filter. (This is called a cascaded filter.)

I See the exercises for proofs of these two results.
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Impulse response and transfer function
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Impulse response and transfer function

Properties of a filter

In order to explore the properties of a given LTI filter, we will consider the
effect of applying the filter to some test sequences. The sequences in
question will be:

1. the impulse sequence,
2. a complex wave.

Formal definitions will be given on the following slides, however, informally
they tell us about:

1. the effect of the filter if we input a single shock to the system at a
given time,

2. the effect the filter has on a signal made up of one specific frequency.
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Impulse response and transfer function Impulse response

The impulse response sequence

For a given m ∈ Z, define the impulse sequence {δt,m} so that for t ∈ Z

δt,m =

{
1 if m = t,
0 otherwise.

Definition 11.6
For some LTI filter L, let the impulse response sequence be {hm} such that
for any m ∈ Z

hm = L [{δt,−m}]0 . (11.10)

I Note: the zero here is the time index.
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Impulse response and transfer function Impulse response

Linear filters as a convolution

Theorem 11.7

A digital filter L is an LTI filter if and only if we can write the filter output
as a convolution:

L [{Xt}]u =
∑
m∈Z

hu−mXm (11.11)

for any u ∈ Z.

I The {hm} here is the same impulse response we defined on the
previous slide.

I The proof of this result will be in the exercises.
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Impulse response and transfer function Transfer function

The transfer function

Recall, the second kind of test sequence of interest is a complex wave.
For f ∈ R, let

{
ξt,f

}
be such that for all t ∈ Z,

ξt,f = e2πift .

Definition 11.8
The transfer function of an LTI filter L is

H(f ) = L
[{
ξt,f

}]
0 , f ∈ R. (11.12)

I The transfer function is useful for understanding the frequency
domain properties of a linear filter.
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Impulse response and transfer function Transfer function

Theorem 11.9

Consider an LTI filter L. The
{
ξt,f

}
sequences are the eigensequences and

H(f ) the eigenvalues of L. In other words,

L
[{
ξt,f

}]
= H(f )

{
ξt,f

}
(11.13)

for any f ∈ R.

I So we see that applying a linear filter to a complex wave just modifies
its phase and amplitude, whilst retaining the same frequency.

I The shape of H(f ) determines how this weighting occurs.
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Impulse response and transfer function Transfer function

Proof of Theorem 11.9.
For any u ∈ Z and f ∈ R, begin by noting that for any τ ∈ Z

B−u [{ξt,f
}]

τ
= ξτ+u,f = e2πi(τ+u)f = e2πiuf ξτ,f ,

and so

B−u [{ξt,f
}]

= e2πiuf {ξt,f
}
. (11.14)

Therefore

L
[{
ξt,f

}]
u = Bu [L [

B−u [{ξt,f
}]]]

u (time invariance)

= L
[
e2πifu {ξt,f

}]
0

(by (11.14))

= e2πifuL
[{
ξt,f

}]
0 (linearity)

= ξu,f H(f ). (by definition)

Therefore since this holds for any u ∈ Z, the result holds.
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Impulse response and transfer function Transfer function

Why did we do this?
If {Xt} is second order stationary, then we have two representations

Xt =
∑
m∈Z

Xmδm,t , (sifting property)

Xt
ms
= µ+

∫ 1/2

−1/2
e2πiftdZ(f ). (spectral representation)

Thus L [{Xt}] is

L [{Xt}]u =
∑
m∈Z

XmL [{δm,t}]u ,

L [{Xt}]u
ms
= µ+

∫ 1/2

−1/2
L
[{

e2πift
}]

u
dZ(f )

= µ+

∫ 1/2

−1/2
H(f )e2πifudZ(f ).
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Impulse response and transfer function Transfer function

Relating the impulse response and transfer function

Theorem 11.10
The transfer function is the Fourier transform of the impulse response, in
other words, assuming {hm} ∈ `1, for f ∈ R

H(f ) =
∑
m∈Z

hme−2πifm. (11.15)

I This provides a convenient way to compute the transfer function.
I Notice that since the impulse response was a convolution, Theorem

11.9 is a consequence of the convolution theorem! (See exercises for
details.)
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Impulse response and transfer function Transfer function

Proof.
We have for any f ∈ R∑

m∈Z
hme−2πifm =

∑
m∈Z

L [{δt,−m}]0 e−2πifm

= L
[{∑

m∈Z
δt,−me−2πifm

}]
0

(linearity)

= L
[{

e2πift
}]

0
= H(f ).

where the third line follows because δt,−m is one if m = −t and zero
otherwise.
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The spectral density function and linear filters

The spectral density function and linear filters
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The spectral density function and linear filters

Spectra of the output process

In what follows, it will be convenient to augment our usual notation. For
the stationary discrete-time time series {Xt}t∈Z, we will write

I µX for the mean,
I γ

(X)
τ for the autocovariance,

I SX (f ) for the spectral density function.

Theorem 11.11

Consider a stationary time series {Xt}t∈Z. If L is an LTI filter with impulse
response h ∈ `1, and

{Yt} = L [{Xt}]

then {Yt} is a stationary process.
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The spectral density function and linear filters

Proof.
From Theorem 11.7, Y = h ∗ X . Thus for any t ∈ Z, by Fubini’s theorem

E [Yt ] =
∑
m∈Z

hmE [Xt−m] = µX
∑
m∈Z

hm

which does not depend on t. Now for t, τ ∈ Z we have

Cov (Yt ,Yt+τ ) =
∑
m∈Z

∑
s∈Z

hmhs Cov (Xt−m,Xt+τ−s) (Fubini)

=
∑
m∈Z

∑
s∈Z

hmhsγ
(X)
τ+m−s (stationarity)

which does not depend on t. Finally by stationarity and h ∈ `1

γ
(Y )
0 ≤ γ

(X)
0 ‖h‖2

1 < ∞.
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The spectral density function and linear filters

Theorem 11.12
Consider a stationary time series {Xt}t∈Z, with γ(X) ∈ `1. If L is an LTI
filter with impulse response h ∈ `1, and {Yt} = L [{Xt}] then

SY (f ) = |H(f )|2 SX (f ) (11.16)

where H is the transfer function of L.

I From this result, we can conveniently compute the spectral density
function of different processes.
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The spectral density function and linear filters

Proof.
Firstly from the proof of Theorem 11.11

γ(Y )
τ =

∑
m∈Z

∑
s∈Z

hmhsγ
(X)
τ+m−s

=
∑
m∈Z

∑
u∈Z

hmhu+mγ
(x)
τ−u (u = s − m)

=
∑
u∈Z

∑
m∈Z

hmhu+mγ
(x)
τ−u (Fubini)

=
∑
u∈Z

wuγ
(x)
τ−u

where

wu =
∑
m∈Z

hmhu+m.
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The spectral density function and linear filters

Therefore we can apply the convolution theorem, obtaining for f ∈ R

SY (f ) = W (f )SX (f ) .

All that remains is to find W , the Fourier transform of w . Letting
h̃t = h−t for all t ∈ Z, we see

wu =
∑
m∈Z

hmhu+m

=
∑

m′∈Z
h̃m′hu−m′ (setting m′ = −m)

so w = h̃ ∗ h and thus applying the convolution theorem again

W (f ) = H̃(f )H(f ) = |H(f )|2 ,

because H̃(f ) = H(−f ) = H(f )∗. This gives the required result.
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The spectral density function and linear filters

Lemma 11.13

The filter given by Φ(B) for some pth order polynomial Φ is an LTI filter
with transfer function

H(f ) = Φ(e−2πif )

for f ∈ R.

Proof.
A linear combination of LTI filters is an LTI filter. The impulse response is

hm =

{
φm if 0 ≤ m ≤ p,
0 otherwise.

So its transfer function is

H(f ) =
∑
m∈Z

hme−2πifm =

p∑
j=0

φje−2πifj = Φ(e−2πif ).
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The spectral density function and linear filters

Theorem 11.14
Consider a stationary ARMA(p, q) process

Φ(B)Xt = θ(B)εt ,

the spectral density function of X is given by

SX (f ) = σ2
∣∣Θ (

e−2πif )∣∣2
|Φ(e−2πif )|2

= σ2

∣∣∣∣∣
∑q

j=0 θje−2πijf∑p
j=0 φje−2πijf

∣∣∣∣∣
2

I We do not have a nice closed form for the autocovariance function of
an ARMA process.

I But, we do have nice form for the spectral density function.
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The spectral density function and linear filters

Proof.
If we have a stationary ARMA process, then we can write

Φ(B) [{Xt}] = Θ(B) [{εt}] .

Therefore we have from Lemma 11.13∣∣∣Φ(e−2πif )
∣∣∣2 SX (f ) =

∣∣∣Θ(e−2πif )
∣∣∣2 Sε (f )

and so

SX (f ) = σ2
∣∣Θ (

e−2πif )∣∣2
|Φ(e−2πif )|2

because, by stationarity Φ
(
e−2πif ) 6= 0.
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