

Time Series lecture 11

Linear time-invariant filters

Sofia Olhede

May 7, 2025

Lecture outline

1. Linear filters
2. Impulse response and transfer function
 - ▶ Impulse response
 - ▶ Transfer function
3. The spectral density function and linear filters

Linear filters

Digital filters

A digital filter maps some input sequence to another output sequence. In this lecture, these sequences will have the index set \mathbb{Z} . Other filters exist, but in this course, filter will mean digital filter.

- ▶ If a filter is given by L , then the filter of a sequence $\{X_t\}$ will be another sequence, say $\{Y_t\}$, and we write

$$\{Y_t\} = L[\{X_t\}]. \quad (11.1)$$

- ▶ When we refer to an element of the output of a filter, we will write a subscript after the bracket, e.g.

$$Y_u = L[\{X_t\}]_u. \quad (11.2)$$

To be clear, the t in $\{X_t\}$ is a dummy variable, whilst $u \in \mathbb{Z}$ has meaning.

We have dropped the index set from the sequences for notational convenience, i.e. in this lecture $\{X_t\} = \{X_t\}_{t \in \mathbb{Z}}$.

Linear time-invariant filters

Recall the backshift operator, denoted B . It has the property that

$$B[\{X_t\}]_u = X_{u-1} \quad (11.3)$$

for any $u \in \mathbb{Z}$.

Definition 11.1

A digital filter L is called a linear time-invariant (LTI) filter if for any sequences $\{X_t\}$, $\{Y_t\}$ and any $\alpha \in \mathbb{C}$ we have

1. Linearity:

$$L[\{\alpha X_t + Y_t\}] = \alpha L[\{X_t\}] + L[\{Y_t\}]. \quad (11.4)$$

2. Time invariance:

$$L[B[\{X_t\}]] = B[L[\{X_t\}]]. \quad (11.5)$$

Some examples

Example 11.2

The backshift operator is clearly a linear time-invariant filter.

Example 11.3

Consider a filter L such that for any $u \in \mathbb{Z}$

$$L[\{X_t\}]_u = X_u + \phi X_{u-1},$$

where $\phi \in \mathbb{R}$. This is linear because for any $u \in \mathbb{Z}$

$$\begin{aligned} L[\{\alpha X_t + Y_t\}]_u &= \alpha(X_u + \phi X_{u-1}) + Y_u + \phi Y_{u-1} \\ &= \alpha L[\{X_t\}]_u + L[\{Y_t\}]_u. \end{aligned}$$

Time invariance is left to the interested reader, but is easily verified.

Arbitrary time shifts

Say we want to shift by some arbitrary $u \in \mathbb{Z}$, then we need only apply B u times, i.e. for any $s \in \mathbb{Z}$

$$B^u [\{X_t\}]_s = X_{s-u}. \quad (11.6)$$

(If $u < 0$, this means applying the inverse operator, B^{-1} , $-u$ times).

If L is an LTI filter, then for any $u \in \mathbb{Z}$,

$$L [B^u \{X_t\}] = B^u L [\{X_t\}]. \quad (11.7)$$

Often, (11.7) is stated as the condition for time-invariance (as this parallels the continuous-time version), however, one only needs to show the weaker condition given in (11.5).

Linear combinations of linear filters

Proposition 11.4

Consider two LTI filters L_1 and L_2 , and let $\alpha \in \mathbb{C}$ then the filter

$$L = \alpha L_1 + L_2 \quad (11.8)$$

is also an LTI filter.

Proposition 11.5

Consider two LTI filters L_1 and L_2 . The filter $L = L_1 L_2$, i.e. so that

$$L[\{X_t\}] = L_1[L_2[\{X_t\}]] \quad (11.9)$$

is also an LTI filter. (This is called a cascaded filter.)

- ▶ See the exercises for proofs of these two results.

Impulse response and transfer function

Properties of a filter

In order to explore the properties of a given LTI filter, we will consider the effect of applying the filter to some test sequences. The sequences in question will be:

1. the impulse sequence,
2. a complex wave.

Formal definitions will be given on the following slides, however, informally they tell us about:

1. the effect of the filter if we input a single shock to the system at a given time,
2. the effect the filter has on a signal made up of one specific frequency.

The impulse response sequence

For a given $m \in \mathbb{Z}$, define the impulse sequence $\{\delta_{t,m}\}$ so that for $t \in \mathbb{Z}$

$$\delta_{t,m} = \begin{cases} 1 & \text{if } m = t, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 11.6

For some LTI filter L , let the impulse response sequence be $\{h_m\}$ such that for any $m \in \mathbb{Z}$

$$h_m = L[\{\delta_{t,-m}\}]_0. \quad (11.10)$$

- ▶ Note: the zero here is the time index.

Linear filters as a convolution

Theorem 11.7

A digital filter L is an LTI filter if and only if we can write the filter output as a convolution:

$$L[\{X_t\}]_u = \sum_{m \in \mathbb{Z}} h_{u-m} X_m \quad (11.11)$$

for any $u \in \mathbb{Z}$.

- ▶ The $\{h_m\}$ here is the same impulse response we defined on the previous slide.
- ▶ The proof of this result will be in the exercises.

The transfer function

Recall, the second kind of test sequence of interest is a complex wave. For $f \in \mathbb{R}$, let $\{\xi_{t,f}\}$ be such that for all $t \in \mathbb{Z}$,

$$\xi_{t,f} = e^{2\pi i f t}.$$

Definition 11.8

The transfer function of an LTI filter L is

$$H(f) = L[\{\xi_{t,f}\}]_0, \quad f \in \mathbb{R}. \quad (11.12)$$

- ▶ The transfer function is useful for understanding the frequency domain properties of a linear filter.

Theorem 11.9

Consider an LTI filter L . The $\{\xi_{t,f}\}$ sequences are the eigensequences and $H(f)$ the eigenvalues of L . In other words,

$$L[\{\xi_{t,f}\}] = H(f) \{\xi_{t,f}\} \quad (11.13)$$

for any $f \in \mathbb{R}$.

- ▶ So we see that applying a linear filter to a complex wave just modifies its phase and amplitude, whilst retaining the same frequency.
- ▶ The shape of $H(f)$ determines how this weighting occurs.

Proof of Theorem 11.9.

For any $u \in \mathbb{Z}$ and $f \in \mathbb{R}$, begin by noting that for any $\tau \in \mathbb{Z}$

$$B^{-u} [\{\xi_{t,f}\}]_{\tau} = \xi_{\tau+u,f} = e^{2\pi i(\tau+u)f} = e^{2\pi iuf} \xi_{\tau,f},$$

and so

$$B^{-u} [\{\xi_{t,f}\}] = e^{2\pi iuf} \{\xi_{t,f}\}. \quad (11.14)$$

Therefore

$$\begin{aligned} L [\{\xi_{t,f}\}]_u &= B^u [L [B^{-u} [\{\xi_{t,f}\}]]]_u && \text{(time invariance)} \\ &= L \left[e^{2\pi ifu} \{\xi_{t,f}\} \right]_0 && \text{(by (11.14))} \\ &= e^{2\pi ifu} L [\{\xi_{t,f}\}]_0 && \text{(linearity)} \\ &= \xi_{u,f} H(f). && \text{(by definition)} \end{aligned}$$

Therefore since this holds for any $u \in \mathbb{Z}$, the result holds. □

Why did we do this?

If $\{X_t\}$ is second order stationary, then we have two representations

$$X_t = \sum_{m \in \mathbb{Z}} X_m \delta_{m,t}, \quad (\text{sifting property})$$

$$X_t \stackrel{ms}{=} \mu + \int_{-1/2}^{1/2} e^{2\pi ift} dZ(f). \quad (\text{spectral representation})$$

Thus $L[\{X_t\}]$ is

$$L[\{X_t\}]_u = \sum_{m \in \mathbb{Z}} X_m L[\{\delta_{m,t}\}]_u,$$

$$\begin{aligned} L[\{X_t\}]_u &\stackrel{ms}{=} \mu + \int_{-1/2}^{1/2} L\left[\left\{e^{2\pi ift}\right\}\right]_u dZ(f) \\ &= \mu + \int_{-1/2}^{1/2} H(f) e^{2\pi ifu} dZ(f). \end{aligned}$$

Relating the impulse response and transfer function

Theorem 11.10

The transfer function is the Fourier transform of the impulse response, in other words, assuming $\{h_m\} \in \ell^1$, for $f \in \mathbb{R}$

$$H(f) = \sum_{m \in \mathbb{Z}} h_m e^{-2\pi ifm}. \quad (11.15)$$

- ▶ This provides a convenient way to compute the transfer function.
- ▶ Notice that since the impulse response was a convolution, Theorem 11.9 is a consequence of the convolution theorem! (See exercises for details.)

Proof.

We have for any $f \in \mathbb{R}$

$$\begin{aligned} \sum_{m \in \mathbb{Z}} h_m e^{-2\pi ifm} &= \sum_{m \in \mathbb{Z}} L[\{\delta_{t,-m}\}]_0 e^{-2\pi ifm} \\ &= L \left[\left\{ \sum_{m \in \mathbb{Z}} \delta_{t,-m} e^{-2\pi ifm} \right\} \right]_0 \quad (\text{linearity}) \\ &= L \left[\left\{ e^{2\pi ift} \right\} \right]_0 \\ &= H(f). \end{aligned}$$

where the third line follows because $\delta_{t,-m}$ is one if $m = -t$ and zero otherwise. □

The spectral density function and linear filters

Spectra of the output process

In what follows, it will be convenient to augment our usual notation. For the stationary discrete-time time series $\{X_t\}_{t \in \mathbb{Z}}$, we will write

- ▶ μ_X for the mean,
- ▶ $\gamma_{\tau}^{(X)}$ for the autocovariance,
- ▶ $S_X(f)$ for the spectral density function.

Theorem 11.11

Consider a stationary time series $\{X_t\}_{t \in \mathbb{Z}}$. If L is an LTI filter with impulse response $h \in \ell^1$, and

$$\{Y_t\} = L[\{X_t\}]$$

then $\{Y_t\}$ is a stationary process.

Proof.

From Theorem 11.7, $Y = h * X$. Thus for any $t \in \mathbb{Z}$, by Fubini's theorem

$$\mathbb{E}[Y_t] = \sum_{m \in \mathbb{Z}} h_m \mathbb{E}[X_{t-m}] = \mu_X \sum_{m \in \mathbb{Z}} h_m$$

which does not depend on t . Now for $t, \tau \in \mathbb{Z}$ we have

$$\begin{aligned} \text{Cov}(Y_t, Y_{t+\tau}) &= \sum_{m \in \mathbb{Z}} \sum_{s \in \mathbb{Z}} h_m h_s \text{Cov}(X_{t-m}, X_{t+\tau-s}) && \text{(Fubini)} \\ &= \sum_{m \in \mathbb{Z}} \sum_{s \in \mathbb{Z}} h_m h_s \gamma_{\tau+m-s}^{(X)} && \text{(stationarity)} \end{aligned}$$

which does not depend on t . Finally by stationarity and $h \in \ell^1$

$$\gamma_0^{(Y)} \leq \gamma_0^{(X)} \|h\|_1^2 < \infty.$$

Theorem 11.12

Consider a stationary time series $\{X_t\}_{t \in \mathbb{Z}}$, with $\gamma^{(X)} \in \ell^1$. If L is an LTI filter with impulse response $h \in \ell^1$, and $\{Y_t\} = L[\{X_t\}]$ then

$$S_Y(f) = |H(f)|^2 S_X(f) \quad (11.16)$$

where H is the transfer function of L .

- ▶ From this result, we can conveniently compute the spectral density function of different processes.

Proof.

Firstly from the proof of Theorem 11.11

$$\begin{aligned}
 \gamma_{\tau}^{(Y)} &= \sum_{m \in \mathbb{Z}} \sum_{s \in \mathbb{Z}} h_m h_s \gamma_{\tau+m-s}^{(X)} \\
 &= \sum_{m \in \mathbb{Z}} \sum_{u \in \mathbb{Z}} h_m h_{u+m} \gamma_{\tau-u}^{(x)} \quad (u = s - m) \\
 &= \sum_{u \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} h_m h_{u+m} \gamma_{\tau-u}^{(x)} \quad (\text{Fubini}) \\
 &= \sum_{u \in \mathbb{Z}} w_u \gamma_{\tau-u}^{(x)}
 \end{aligned}$$

where

$$w_u = \sum_{m \in \mathbb{Z}} h_m h_{u+m}.$$

Therefore we can apply the convolution theorem, obtaining for $f \in \mathbb{R}$

$$S_Y(f) = W(f)S_X(f).$$

All that remains is to find W , the Fourier transform of w . Letting $\tilde{h}_t = h_{-t}$ for all $t \in \mathbb{Z}$, we see

$$\begin{aligned} w_u &= \sum_{m \in \mathbb{Z}} h_m h_{u+m} \\ &= \sum_{m' \in \mathbb{Z}} \tilde{h}_{m'} h_{u-m'} \quad (\text{setting } m' = -m) \end{aligned}$$

so $w = \tilde{h} * h$ and thus applying the convolution theorem again

$$W(f) = \tilde{H}(f)H(f) = |H(f)|^2,$$

because $\tilde{H}(f) = H(-f) = H(f)^*$. This gives the required result. □

Lemma 11.13

The filter given by $\Phi(B)$ for some p^{th} order polynomial Φ is an LTI filter with transfer function

$$H(f) = \Phi(e^{-2\pi if})$$

for $f \in \mathbb{R}$.

Proof.

A linear combination of LTI filters is an LTI filter. The impulse response is

$$h_m = \begin{cases} \phi_m & \text{if } 0 \leq m \leq p, \\ 0 & \text{otherwise.} \end{cases}$$

So its transfer function is

$$H(f) = \sum_{m \in \mathbb{Z}} h_m e^{-2\pi ifm} = \sum_{j=0}^p \phi_j e^{-2\pi ifj} = \Phi(e^{-2\pi if}).$$

Theorem 11.14

Consider a stationary ARMA(p, q) process

$$\Phi(B)X_t = \theta(B)\epsilon_t,$$

the spectral density function of X is given by

$$\begin{aligned} S_X(f) &= \sigma^2 \frac{|\Theta(e^{-2\pi if})|^2}{|\Phi(e^{-2\pi if})|^2} \\ &= \sigma^2 \left| \frac{\sum_{j=0}^q \theta_j e^{-2\pi ifj}}{\sum_{j=0}^p \phi_j e^{-2\pi ifj}} \right|^2 \end{aligned}$$

- We do not have a nice closed form for the autocovariance function of an ARMA process.
- But, we do have nice form for the spectral density function.

Proof.

If we have a stationary ARMA process, then we can write

$$\Phi(B)[\{X_t\}] = \Theta(B)[\{\epsilon_t\}].$$

Therefore we have from Lemma 11.13

$$\left| \Phi(e^{-2\pi if}) \right|^2 S_X(f) = \left| \Theta(e^{-2\pi if}) \right|^2 S_\epsilon(f)$$

and so

$$S_X(f) = \sigma^2 \frac{\left| \Theta(e^{-2\pi if}) \right|^2}{\left| \Phi(e^{-2\pi if}) \right|^2}$$

because, by stationarity $\Phi(e^{-2\pi if}) \neq 0$.

